Evolution and Scaling in Mammalian Brains
نویسنده
چکیده
Here I look at three stages in the evolutionary development of mammalian brains. Chapter one addresses how connectivity in neocortex scales with brain size. This is of evolutionary interest because it helps define the basic mammalian condition. Neocortical white matter increases disproportionately in large brains. This might reflect increases in the number of connections per neuron. It might also reflect scaling in axon diameter. I compare these hypotheses by examining white matter-gray matter scaling in cerebellum. Because the white matter of cerebellum lacks cortico-cortical connections, the connectivity theory predicts that cerebellar white matter should not hyperscale relative to gray matter. I have measured white matter and gray matter volume in a large sample of mammals and I find that cerebellar white matter does not hyperscale. This supports the proposition that neocortical hyperscaling reflects an increase in the number of connections per neuron in large brains. In chapter two I use independent contrasts analysis to examine the scaling of frontal cortex in a large sample of mammals. I find significant differences in scaling between primates and carnivores. Primate frontal cortex hyperscales relative to the rest of neocortex and the rest of the brain, and the primate slope is significantly greater than that for carnivores. This suggests that there are substantial differences in frontal cortex structure and development between the two groups. Combined with with anatomical differences, it suggests that primates have evolved a number of unique adaptations in frontal cortex. Chapter three examines the evolution of brain size in anthropoid primates. Living anthropoids have larger brains than strepsirrhines. What about early anthropoid fossils? I measure brain size in the early anthropoid Parapithecus grangeri using
منابع مشابه
Cellular Scaling Rules for the Brains of Marsupials: Not as "Primitive" as Expected.
In the effort to understand the evolution of mammalian brains, we have found that common relationships between brain structure mass and numbers of nonneuronal (glial and vascular) cells apply across eutherian mammals, but brain structure mass scales differently with numbers of neurons across structures and across primate and nonprimate clades. This suggests that the ancestral scaling rules for ...
متن کاملScaling relations in dynamical evolution of star clusters
We have carried out a series of small scale collisional N-body calculations of single-mass star clusters to investigate the dependence of the lifetime of star clusters on their initial parameters. Our models move through an external galaxy potential with a logarithmic density profile and they are limited by a cut-off radius. In order to find scaling relations between the lifetime of star cluste...
متن کاملWhen larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals
There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a pop...
متن کاملVariation in human brains may facilitate evolutionary change toward a limited range of phenotypes.
Individual variation is the foundation for evolutionary change, but little is known about the nature of normal variation between brains. Phylogenetic variation across mammalian brains is characterized by high intercorrelations in brain region volumes, distinct allometric scaling for each brain region and the relative independence of olfactory and limbic structure volumes from the rest of the br...
متن کاملCellular Scaling Rules of Insectivore Brains
Insectivores represent extremes in mammalian body size and brain size, retaining various "primitive" morphological characteristics, and some species of Insectivora are thought to share similarities with small-bodied ancestral eutherians. This raises the possibility that insectivore brains differ from other taxa, including rodents and primates, in cellular scaling properties. Here we examine the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004